
International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February-2012 1
ISSN 2229-5518

IJSER © 2012

http:/ /www.ij ser.org

Efficient Agent Based Testing Framework for

Web Applications
 Ms.Neha Saluja Prof.Amit Kanskar

Abstract- Now days, making use of web based applications becomes crucial for the success of businesses worldwide. But as they are open and

built on Internet, this kind of applications is imposing the new challenges to the developers and researchers such as such as dynamic behaviors,

heterogeneous representations, novel control f low and data f low mechanisms, etc. In the previous studies, the agent based approach provided for

web application testing in order to reduce the complexity of such applications. A four-level data f low test approach can be employed to perform

structure testing on them. In this approach, data f low analysis will be performed as Function Level Testing, Function Cluster Level Testing, Object

Level Testing, and Web Application Level Testing, from low abstract level to high abstract level. But that approach was limited because only the

basic features of such framew ork are implemented.

Therefore, in this research thesis we are further extending that framew ork w ith more specif ic features implement like specif ic test agents for each

particular type of Web document or object. Moreover, integrating more testing approaches, such as navigation testing, object state testing,

statistical testing, etc., is still necessary for a systematic testing approach for Web applications.

Index Terms—Testing, Web Applications, Function cluster level testing, Object level testing, Function level testing.

—————————— ——————————

1 INTRODUCTION

In the last few years, web-based systems as a new genre
of software systems have found their way into many
different domains like education, entertainment,
business, communication, and marketing. Parallel to this
interest in development of web-based systems, many
needs arise due to the importance of assessing the quality
of these systems. Software testing is the traditional
mechanism for this purpose and it has long been used in
the software history. Web-based systems, due to their
special characteristics and inherent complexities are more
difficult to test, compared to traditional software. These
complexities increase the cost of testing web-based
systems. Test automation is the main solution for
reducing these costs. Considerable effort has been
dedicated to the development of tools, techniques and
methods that automate different tasks in the testing
process, but they are usually limited to one part or
activity of the test process (e.g. test case generation, test
execution). In addition to these limited solutions, some
works have focused on presenting an integrated test
framework that can be used to perform the whole test
process with as much automation as possible. The
complexity of web-based systems dictates that a
systematic test framework, which is suitable for their
architecture, is needed rather than a set of in- dependent
tools.
In this project, an agent-based framework is presented for
testing web-based systems and a prototype of this
framework is developed. The main design goals have
been to develop an effective and flexible system that un-
like most of the existing test frameworks are capable of
supporting different types of test with as much test

automation as possible. The framework is designed to be
capable of utilizing different sources of information about
the System under Test (SUT) in order to automate the test
process.
To meet these goals, the proposed framework is a multi-
agent system consisting of a set of agents. Different
agents, collaborating with each other, perform the
activities involved in the test process. Therefore, one of
the main issues in the design of the framework is the
identification and separation of different parties and roles
that are involved in the test process. From this point of
view, a reasonable design helps to improve the
extendibility and flexibility of the framework.

.

2 PREVIOUS WORKS

Wireless Ad-hoc networks are required where a
fixed in the previous studies, we observed that agent
based framework is proposed for web applications
testing. However this framework having very limited
functionalities for evaluating the complexity of such web
applications. Following are the drawbacks of existing
approach:

- Limited Agents for limited features.
- Only basic features implemented.
- No specific test agents for every kind of web

document.
- Limited Testing approaches implemented.

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February-2012 2
ISSN 2229-5518

IJSER © 2012

http:/ /www.ij ser.org

3 PROPOSED APPROACH

- Thus in the project we are further extending the
previous basic agent based testing framework for
web applications into a novel multi-agent
framework for automated testing of web- based
systems. In this project we are presenting an
effective and flexible framework that supports
different types of tests and utilize different
sources of information about the system under
test to automate the test process. In this multi
agent framework, we address the limitations of
agents in previous approach as well as more
specific features are considered and
implemented in the framework. In this approach
we are also consider integration of more testing
approaches to become more flexible and efficient
framework.

-
The existing web application test frameworks

have two main characteristics in common. First, all of
them are somehow limited both in terms of the test
strategy they use (white-box, black-box, gray-box) and
the types of tests they are designed for. For instance,
some framework addresses only white-box strategy and
session-based test case generation, while some
framework is addresses only security tests. The second
point is that, despite their differences, the way they
finally execute a test is almost similar. In other words,
regardless of whether a security test is being executed, or
a functional test generated from TTCN-3 specifications, in
both cases the test execution is performed by a set of
HTTP interactions with the target system. Therefore, it
can be concluded that it is possible to have a framework
that supports different types of tests. The reason is that a
test, whether a security test or a load tests, finally is
executed in terms of a set of HTTP interactions with the
SUT. So, if there is a formal format for test specification,
then it is possible to develop different modules, each of
which generates the specification of a special type of test.
In addition, a single module can be developed for
execution of all types of tests. All that is needed is that the
tests are represented in a format that the executer module

understands, and the executer module is able to behave
like a web browser and perform HTTP-based
interactions. The proposed framework relies on this point
to support different test types.

Our goal was to design a test framework for
testing web applications. The main design goals were
effectiveness and flexibility. By effectiveness we mean
that the framework is useful for automated execution of
different types of tests, such as functional, load, stress,
security or regression test. By flexible we mean that the
framework should be designed in a way that adding new
functionalities can be achieved with some reasonable
level of effort, i.e. the architecture of the framework is
open to future changes and improvements. To meet these
goals, it was decided to design a multi-agent architecture
for the framework. By analyzing the system from a more
abstract point of view, different concepts (e.g. test script,
test code) and roles (e.g. test script generator, test
executer) involved in the test process were identified.

In the proposed framework, different kinds of
agents responsible for performing different tasks and
playing different roles are defined. This separation of
concerns is helpful in achieving the desired goals. As
each agent is responsible for performing almost a single
task, it reduces the complexities of implementing the
agents and also enables new agents to be added in the
future. Another benefit of using multi agent architecture
is that different agents can be distributed across a
network and provide a distributed framework for testing
web-based systems that are themselves inherently
distributed. This distributed architecture can increase the
effectiveness of the framework because it facilitates some
tests to be performed in a more actual style. The main
drawback of using a multi-agent architecture for the
framework is that it imposes some communication
overhead because of the messages that must be
transferred between different agents to perform their
activities. In addition to the communication overhead, the
definition of interfaces through which different agents
collaborate with each other is important. 2.2 Multi Agent
System.

The critical difference between multi-agent
systems and individual agents focuses on the patterns of
communication.
A multi-agents system communicates with the
application and the user, as well as with the other agents
in the system to achieve their objectives. However, in the
Individual agent, communication channels are only open
between the agent and the user. The key characteristics in
multi-agent environments are:
• Multi-agent systems provide the infrastructure for
inter-agent communication.
• Multi-agent systems are usually designed to be open
concept without any centralized designer.

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February-2012 3
ISSN 2229-5518

IJSER © 2012

http:/ /www.ij ser.org

• The agents within a multi-agent system are
autonomous
and may be cooperative or competitive in
nature.
The most important aspect of multi-agent systems is
the communications between the agents. Many protocols
have been developed that give the agents the ability to
both receive and send information to each other.The
overall architecture of the framework and its parts are
illustrated in Figure 1. Different parts of the system are
discussed in the following sections.

4 BASIC TERMS

Test Script: A test is composed of a set of actions or steps
(e.g. opening a web page, entering some values in the
fields of the page, submitting the page…). Each action has
a type (e.g. open, submit, fill, assert Title) and it may
require some parameters (e.g. the URL of the page to be
opened). Therefore, having an appropriate set of actions
defined, a test can be specified in a text file which we call

it test script. It is worth mentioning that a test script
contains test criteria and information needed to judge
about the test result. In other words, there is no separate
part as a test oracle.
Test Code: Test code is a piece of program written in a
programming language which is logically equivalent to a
test script. A test code is generated by performing some
transformations on a test script
Test Case: Test cases are data items used in performing
different steps of the test. For instance in the login
scenario presented earlier, the values used as the user-
name and password are some test cases.
Test Runtime Environment Agent
Test Runtime Environment (TRE) agent is the central part
of the system. It communicates with other agents in order
to manage the setup and execution of different activities
of the test process. TRE is also responsible for providing
suitable interfaces for the user. TRE uses Test Script
Generator (TSG) agent for creating test scripts. When TSG
has created the test script, it sends it to TRE. Receiving
the test script from TSG, TRE passes it to a Test Code
Generator (TCG) agent, which creates the test code from
the test script, compiles it and returns the com- piled test
code back to TRE. Then, TRE allocates some Test
Executer (TE) agents for executing the test, and sends the
compiled test code to them to be executed. TRE is also
responsible for allocating a Dashboard agent and
introducing it to the TE agents executing the test. TE
agents communicate with the Dashboard agent to
provide real-time information about the test process.
Test Script Generator Agent
TSG agent is responsible for providing facilities through
which the user can create a test script. Using TSG, the
user can select how the test script is generated. There are
two possible choices in the framework: using a Recorder
agent, or using a Modeler agent. Based on the user‟s
choice, TSG calls the recorder agent or the modeler agent
to create a test script. These agents, after generating the
test script, return it back to TSG. TSG enables the user to
view the test script and to edit it if required. After all,
TSG sends the test script to TRE and TRE continues the
test process.
Test Code Generator Agent
Test Code Generator (TCG) agent generating a test code
from a test script, compiles it and sends the compiled
code to TRE.

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February-2012 4
ISSN 2229-5518

IJSER © 2012

http:/ /www.ij ser.org

Test Executer Agent
A TE agent receives the executable code

(generated by TCG agent) from the TRE. It then executes
the received code. In addition, during the test execution,
it is in communication with a Dashboard agent and sends
the partial results to it. After the execution of the test is
completed, the TE agent sends the total result to the TRE.
It is important to note that it is possible (and even
sometimes required) that multiple TE agents be involved
in running a test. For instance, in case of load test,
multiple agents can be created on different machines and
execute the test from that machine to simulate concurrent
users of the system

Dashboard Agent
When a TE agent is executing a test, it sends the

partial results of the test to a Dashboard agent.
Dashboard agent uses such data to provide a real-time
display of the test execution status and test results.

Result Analyzer Agent
When the TRE receives the test results from TE

agents, it sends them to a Result Analyzer agent to
perform user- specified analysis on them. It is possible
that different types of Result Analyzer agents, with
different capabilities, exist in the system. Such agents can
create reports in different formats and generate different
kinds of graphs and tables presenting the test results in
more comprehensible forms.

Recorder Agent
Recorder agent is responsible for generating test

scripts by recording the user interactions with the SUT. It
provides a browser-like facility for the user to perform
some interactions with the SUT and it captures these
interactions as a test script.

Modeler Agent

Modeler agent, which enables model-based
testing, is used to generate a test script based on some
formal or semi-formal model of the SUT. If such models
are avail-able, they can be utilized to generate test scripts.
Different types of Modeler agents can be implemented,
each of which uses different source of information as a
model to create the test script. We have identified these
types of models or information sources:

• Navigation model: The simplest case for a
Modeler agent is to create a test script from the
navigation model of the SUT. Navigation model
represents a web application in terms of its composing
pages and navigation links.

• UML Diagrams: a modeler agent can use the
UML diagrams of the SUT to create test scripts. Such test
scripts can be used for functional tests for instance.
Especially if OCL (Object Constraint Language) is used in
the UML diagrams to specify restrictions on concepts of
the system, they can improve the performance.

• Session Data: session data can be used by a
modeler agent to generate test scripts.

• Ontology: Ontologies can also be used as a
source of information to generate test cases required for a
test script.

• Source code: in case that the source code of the
sys-tem is available, it can be utilized to generate test
scripts, for instance test scripts that cover all the
execution paths. Techniques like Java annotations can be
used to add useful metadata to the source code to ease
such test script or test case generation.

• Database of the SUT: Although it is not a
model of the system, but the database can contain useful
in-formation about the concepts and entities present in
the SUT.

• Security: A modeler agent for security testing
gene-rates a model for the system from the perspective of
evaluating its security. The result of this test provides
some useful information about the degree of security of
the system based on ASVS standard.

5 IMPLEMENTATION

Prototype of the proposed framework was

implemented in Java. In this section some issues about
the implementation of this prototype are briefly
discussed, since a comprehensive discussion of the
implementation details is beyond the scope of this paper.
JADE2 is used as the under- lying infrastructure of the
framework. It provides the essential services for
developing a multi-agent system and hides many low
level complexities and implementation details. TRE, TE,
Dashboard, Result Analyzer, TSG, TCG and Modeler

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February-2012 5
ISSN 2229-5518

IJSER © 2012

http:/ /www.ij ser.org

agents have been developed. A Recorder agent is
developed which uses Selenium. Selenium is an open
source tool that provides the recording functionality
through a plug in for Fire-fox browser.

In the prototype system, the format of the test
scripts was chosen to be the same as that of Selenium. A
Selenium test script is a simple XHTML file, containing a
table. Each row of this table (except the first one)
indicates one step of the test. Each step represents one
action. The first row indicates the title of the test script
(i.e. its name). Other rows have three columns. The first
column includes the name of the action. Other two
columns are used for the parameters of that action (e.g.
the URL to be opened, the field name to be filled with the
input value, the expected title).

Test scripts can be created manually or
automatically by the framework. Since test scripts are
simple text files, they later can be edited easily by human
testers. In the current implementation of the framework,
there are different possibilities for creating a test script:
Using recorder agent, and using modeler agent. Different
types of modeler agents are implemented: based on
navigation model, based on session data, based on both
the navigation mod el and the database of the SUT and
also the notion of on- technologies. In addition, another
modeler agent is developed for web service testing.

A TCG agent is implemented which translates
the test scripts into Java source code. The generated
source code uses Selenium HTML Unit class (from the
Selenium tool API) to simulate behaviour of the browser.
TCG compiles the generated Java class and sends the
created .class file to the TRE. When a TE agent receives
this compiled test code from the TRE agent. Then it
creates a new object from the received .class file (using
Java reflections). We call this object the test code object.
Then is starts execution of the test by calling the action
methods on the test code object. Each action method
executes one of the test steps. Dashboard agent receives
the test results from TE agents during the test execution
and generates diagrams representing number of failed
and passed action. A simple result analyzer agent is
developed in the framework. Currently, in addition to
computing the average number of failed steps among all
executers, the result analyzer agent computes „functional
adequacy‟ and „accuracy to expectation‟ defined based on
ISO/IEC 9126 standard.

In order to perform security tests, a modeler
agent was implemented that focuses on generating test
scripts for security tests. This Security agent uses w3af4,
which is a Python-based tool. Based on the user
configurations, Security Agent creates a simple test script.
This test script is defined using a set of new actions we
added to actions defined by Selenium. These actions are
specific to w3af it means that TCG agent translates

theses actions to specific Java code which enables running
w3af plug ins from Java.

6 PERFORMANCE EVALUATION

A comparison of the proposed framework with similar
works discussed in this paper is presented in Table 1
(given below). This comparison is performed based on
these factors:

• Supported Test Types: The more test types are
supported by a test framework, the more powerful is that
framework.

• Test Strategy: Generally there are three test strategies.
Black-box testing imposes the least requirements for the
test to be performed. It does not re-quire the source code
or internal information about the SUT. White-box
strategy is on the other end. It requires that the source
code of the system to be available. Gray-box strategy
resides in the middle. It requires some information about
the internal structure of the system or its details, for
instance the database structure, but not the source code.
A framework that is limited to white-box strategy has less
applicability than one that uses black-box strategy,
because it may not be possible to ask the providers of a
system to make the source code of the system accessible
in order to test the functionality of public interface of the
system.
• Information Sources: This item indicates the types of
information sources that are utilized by the framework to

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February-2012 6
ISSN 2229-5518

IJSER © 2012

http:/ /www.ij ser.org

automate the test process. A framework that is able to use
different sources (e.g. UML models, session information,
source code…) is clearly more effective than a framework
that works only in the presence of a single source.
• Human Manual Intervention: The less human
intervention is needed in the execution of a test pro- cess,
the more effective is the underlying framework.

• Test Applicability Time: In which phases of
SDLC the framework can be used? Is the framework
applicable only when the system is deployed or it can be
used during the whole development cycle?

• Framework Architecture: As mentioned before,

a distributed framework is more powerful and flexible in
the testing web applications, because it copes better with
the characteristics of these systems.

• Target Type: What type of systems can be

tested using the framework? Does it support web services
or only traditional web application?

Here, we concentrate on discussing the proposed

framework with regards to these factors. The framework
supports functional, load, stress, security, and
performance tests. All of these tests are possible through
appropriate test scripts. For instance if a test script for
assessing SQL injection is available then this test script
can be used to per-form a security test. Therefore, the
main issue is how to represent the logic of a test in a test
script. After such a test script is available, it is executable.
Fortunately, all of the test types mentioned above, can be
represented in Selenium test script, because they do not
need anything more than a sequence of HTML
interactions with the SUT. Selenium HTML Unit API
declares methods for handling dynamic behaviour of
web pages, but these methods are not yet completely
implemented. Our point of view is that our framework
will be capable of testing dynamic aspects of web pages
(e.g. Ajax) if required such functionality is provided by
Selenium. Currently the framework is used for
performing some load, stress, functional, performance,
and security tests. If a valid test script representing the
logic of the test is available, the test process can be
performed automatically. Therefore, the main issue is the
way a test script is generated. As mentioned before, the
framework provides facilities for automatic test script
generation based on the user session logs and navigation
model of the SUT. It also provides semi-automatic test
script generation using the recorder agent. The
framework supports all three test strategies. Based on the
presence or absence of different information re-sources,
different functionalities of the system might be available
or unavailable. At least, the black-box strategy is
available and the system requires no access to the

internals of the SUT. But if some sources like user
sessions or system models are available, the frame can
well utilize them. The manual intervention in the
framework is at an acceptable low level. The framework
provides automatic and semi-automatic facilities for
creating test scripts. After a test script is created, it can be
run automatically with little human intervention (e.g.
specifying some parameters). Also as mentioned in
section 3, the level of automation gained by the
framework is much more in case of distributed tests. The
framework is useful in testing operational systems.
Therefore, it does not support tests like unit test and
integration test. Although some of these tests can be
performed by functional tests. The framework is a
distributed one, consisting of different agents
collaborating with each other.

7 CONCLUSION

 In this project, a multi-agent framework

was introduced for testing web-based systems. Different
agents are designed with specific roles and they
collaborate with each other to perform the test. The main
design goals have been to develop an effective and
flexible framework that supports different types of tests
and utilize different sources of information about the
system under test to automate the test process. One of the
novelties of this work is the use of test code which is
based on the idea of mobile code. It provides benefits like
increasing the performance, and decreasing the
complexity of test executer agents. Another novelty of the
work is the modeler agents that use different in-
formation sources for automatic test script generation. A
prototype of the proposed framework has been
implemented and is used to perform some experiments.

These results are promising and verify the overall design
of the framework.

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February-2012 7
ISSN 2229-5518

IJSER © 2012

http:/ /www.ij ser.org

The cost of defect detection has dropped
dramatically.

8 REFERENCE

 [1] A. G. Lucca and A. R. Fasolino, “Testing Web-Based

Applications: The State of the Art and Future Trends,”

Information and Software Technology, Vol. 48, No. 12, 2006,

pp. 1172-1186.

 [2] A. G. Lucca and A. R. Fasolino, “Web Application Testing,”

Web Engineering, Springer, Berlin, Chapter 7, 2006, pp. 219-

260. doi:10.1007/3-540-28218-1_7

 [3] S. Murugesan, “Web Application Development: Challenges

and the Role of Web Engineering,” J. Karat and J.

Vanderdonckt, Eds., Web Engineering, Modelling and

Implementing Web Applications, Springer, Berlin, 2008, pp. 7-

32.

 [4] A. G. Lucca and M. Penta, “Considering Browser Interaction

in Web Application Testing,” Proceedings of the 5th IEEE

International Workshop on Web Site Evolution, IEEE

Computer Society Press, Los Alamitos, 2003, pp. 74-83.

 [5] F. Ricca and P. Tonella, “Web Testing: A Roadmap for the

Empirical Research,” Proceedings of the Seventh IEEE

International Symposium on Web Site Evolution, Budapest, 26

September 2005, pp. 63-70.

 [6] S. Sampath, V. Mihaylov, A. Souter and L. Pollock,

“Composing a Framework to Automate Testing of Operational

Web-Based Software,” 20th IEEE Conference on Software

Maintenance, Chicago, 11-14 September 2004, pp. 104-113.

doi:10.1109/ICSM.2004.1357795

 [7] S. Elbaum, S. Karre and G. Rothermel, “Improving Web

Application Testing with User Session Data,” Proceedings of

the 25th International Conference on Software Engineering,

Portland, 3-10 May 2003, pp. 49-59.

doi:10.1109/ICSE.2003.1201187

 [8] S. Elbaum, G. Rothermel, S. Karre and M. Fisher,

“Leveraging User-Session Data to Support Web Application

Testing,” IEEE Transactions on Software Engineering, Vol. 31,

No. 3, 2005, pp. 187-202. doi:10.1109/TSE.2005.36

 [9] H. Zhu, “A Framework for Service-Oriented Testing of Web

Services,” 30th International Computer Software and

Applications Conference, Chicago, Vol. 2, 17-21 September

2006.

 [10] P. Dhavachelvan, G. V. Uma and V. Venkatachalapathy,

“A New Approach in Development of Distributed Framework

for Automated Software Testing Using Agents,” Knowledge-

Based Systems, Vol. 19, No. 4, 2006, pp. 235-247.

doi:10.1016/j.knosys.2005.12.002

[11] B. Stepien, L. Peyton and P. Xiong, “Framework Testing of Web

Applications Using TTCN-3,” International Journal on Software
Tools for Technology Transfer (STTT), Vol. 10, No. 4, 2008, pp. 371-

381.

